
8January2007 © Copyright Ian D. Romanick 2007

CG Programming II (VGP 352)

Agenda:
 Outline the course.
 Brief OpenGL review.

 Lighting and shading.
 Drawbacks of OpenGL's shading model.

 Phong shading.
 OpenGL 1.3 features that allow real Phong shading.

8January2007 © Copyright Ian D. Romanick 2007

Website & Mailing List

 Course website:
http://people.freedesktop.org/~idr/2007-VGP352/

 All assignments and course material will be
available there...usually before class.

 There is also a mailing list:
http://lists.paranormal-entertainment.com/mailman/listinfo/aipd-vgp35x

http://people.freedesktop.org/~idr/2007-VGP352/
http://lists.paranormal-entertainment.com/mailman/listinfo/aipd-vgp35x

8January2007 © Copyright Ian D. Romanick 2007

Course Outline

 Advanced shading & lighting.
 Phong shading and per-pixel lighting
 Fresnel reflection.
 Bidirectional reflectance distribution functions

 Isotropic lighting with BRDFs.
 Anisotropic lighting with BRDFs.

 Shadows.
 Shadow map based techniques.
 Stencil-buffer based techniques.

8January2007 © Copyright Ian D. Romanick 2007

Course Work – Reading

 Lots of reading!
 Weekly reading from the book will provide

background information on each new topic.
 Readings from academic papers will provide details

of specific algorithms and areas of research.
 Each week someone will present a synopsis of

one of the assigned papers.
 Everyone will present once. There is no escape!

8January2007 © Copyright Ian D. Romanick 2007

Course Work – Programming

 Lots of coding!
 Like last term, there will be weekly programming

assignments.
 The grading criteria and assignment requires will spelled

out more carefully and completely.
 I'm also toying with the idea of having assignments

submitted differently.
 There will be a term project, but it will structured

differently than last term.
 It will incorporate more of the previous assignments.
 No collision detection. ;)

8January2007 © Copyright Ian D. Romanick 2007

Course Work – Exams

 There will be a midterm and a final.
 Unlike last term, there will be a pre-test so that you

know exactly what to expect.
 Unlike last term, the tests will focus more on how

different techniques might be applied to achieve a
desired result.

 The tests will still be hard.

8January2007 © Copyright Ian D. Romanick 2007

Lighting in OpenGL

 Three types of lighting calculations used in
OpenGL.
 Diffuse
 Specular
 Ambient

 Calculated per light.

I d=K d×Ld×max L⋅N , 0
I s=K s×Ls×max N⋅H , 0n

I a=K a×La

8January2007 © Copyright Ian D. Romanick 2007

Shading in OpenGL

 When GL_SMOOTH shading is used, lighting is
calculated per-vertex.

 Calculated lighting values (i.e., colors) are
interpolated down each edge of the polygon,
then across each scan-line.
 Also known as Gouraud shading.

 This is fast and easy to implement in the
hardware of 1992 when OpenGL 1.0 was born.

8January2007 © Copyright Ian D. Romanick 2007

What's the problem with this
shading model?

 Since lighting is only performed at vertexes, it is
easy miss specular highlights...

Image from M. Kilgard, “ Avoiding 16 Common OpenGL Pitfalls” , 1998.

8January2007 © Copyright Ian D. Romanick 2007

Phong Shading

 Last term we discussed Phong's lighting model,
but there is also a Phong shading model.
 We're going to use Phong shading with Blinn's

lighting model.
 Phong shading interpolates normals and

performs lighting calculations at each pixel.
 Much more expensive, but hardware is really fast

these days.

8January2007 © Copyright Ian D. Romanick 2007

How can we do this in OpenGL?

 Two problems must be solved:
 Interpolating surface normals.
 Performing a per-pixel dot product.

 How can we do these operations in OpenGL?
 The interpolation step is the easy part.

8January2007 © Copyright Ian D. Romanick 2007

DOT3 Texture Combine Mode

 The DOT3 texture combine mode can be used
to perform per-pixel lighting calculations.
 Available since OpenGL 1.3 or
ARB_texture_env_combine_dot3.

 Pretty much any card since original Radeon or
original Geforce supports this in some form.

 Some old cards may only support EXT version, which is
slightly different.

8January2007 © Copyright Ian D. Romanick 2007

DOT3 Texture Combine (cont.)

glTexEnvi(GL_TEXTURE_ENV,
 GL_TEXTURE_ENV_MODE,
 GL_COMBINE);

/* Store resulting dot product in color
 * and alpha components.
 */
glTexEnvi(GL_TEXTURE_ENV,
 GL_COMBINE_RGB,
 GL_DOT3_RGBA);

8January2007 © Copyright Ian D. Romanick 2007

Putting It Together

 Store light color in texture environment color.
 Store surface normals (in surface space) in a

texture.
 Store surface gloss map in a texture.
 Store H vector in per-vertex diffuse color.

 H must be calculated H per-vertex in C code!
 Configure combiners to calculate:

diffuse⋅texture0×env×texture1

8January2007 © Copyright Ian D. Romanick 2007

Putting It Together (cont.)

 This math seems to require one more multiply
than we can do in two texture stages.

 We can get the extra multiply by using the
alpha blender.
 Store the dot product in the alpha.
 Configure the blender to do GL_SRC_COLOR *
GL_SRC_ALPHA.

 What is the range of color & texture data?

diffuse⋅texture0×env×texture1

8January2007 © Copyright Ian D. Romanick 2007

Quick Alpha Example

/* Enable alpha blending. */
glEnable(GL_BLEND);

/* Multiply incoming fragment by it's
 * alpha and store in result pixel.
 */
glBlendFunc(GL_SRC_ALPHA, GL_ZERO);

8January2007 © Copyright Ian D. Romanick 2007

Only Specular?

 This only give specular. What about diffuse
and ambient?
 We can get free ambient using
glSecondaryColor and
glEnable(GL_COLOR_SUM).

 Several ways to get diffuse:
 Use more texture units (if available).
 Use a second pass.

 Will slightly different combine and alpha blend logic.

8January2007 © Copyright Ian D. Romanick 2007

Questions?

8January2007 © Copyright Ian D. Romanick 2007

 This work represents the view of the authors and does not necessarily
represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or service
marks of others.

Legal Statement

