
8­January­2007 © Copyright Ian D. Romanick 2007

CG Programming II (VGP 352)

Agenda:
 Outline the course.
 Brief OpenGL review.

 Lighting and shading.
 Drawbacks of OpenGL's shading model.

 Phong shading.
 OpenGL 1.3 features that allow real Phong shading.

8­January­2007 © Copyright Ian D. Romanick 2007

Website & Mailing List

 Course website:
http://people.freedesktop.org/~idr/2007-VGP352/

 All assignments and course material will be
available there...usually before class.

 There is also a mailing list:
http://lists.paranormal-entertainment.com/mailman/listinfo/aipd-vgp35x

http://people.freedesktop.org/~idr/2007-VGP352/
http://lists.paranormal-entertainment.com/mailman/listinfo/aipd-vgp35x

8­January­2007 © Copyright Ian D. Romanick 2007

Course Outline

 Advanced shading & lighting.
 Phong shading and per-pixel lighting
 Fresnel reflection.
 Bidirectional reflectance distribution functions

 Isotropic lighting with BRDFs.
 Anisotropic lighting with BRDFs.

 Shadows.
 Shadow map based techniques.
 Stencil-buffer based techniques.

8­January­2007 © Copyright Ian D. Romanick 2007

Course Work – Reading

 Lots of reading!
 Weekly reading from the book will provide

background information on each new topic.
 Readings from academic papers will provide details

of specific algorithms and areas of research.
 Each week someone will present a synopsis of

one of the assigned papers.
 Everyone will present once. There is no escape!

8­January­2007 © Copyright Ian D. Romanick 2007

Course Work – Programming

 Lots of coding!
 Like last term, there will be weekly programming

assignments.
 The grading criteria and assignment requires will spelled

out more carefully and completely.
 I'm also toying with the idea of having assignments

submitted differently.
 There will be a term project, but it will structured

differently than last term.
 It will incorporate more of the previous assignments.
 No collision detection. ;)

8­January­2007 © Copyright Ian D. Romanick 2007

Course Work – Exams

 There will be a midterm and a final.
 Unlike last term, there will be a pre-test so that you

know exactly what to expect.
 Unlike last term, the tests will focus more on how

different techniques might be applied to achieve a
desired result.

 The tests will still be hard.

8­January­2007 © Copyright Ian D. Romanick 2007

Lighting in OpenGL

 Three types of lighting calculations used in
OpenGL.
 Diffuse
 Specular
 Ambient

 Calculated per light.

I d=K d×Ld×max L⋅N , 0
I s=K s×Ls×max N⋅H , 0n

I a=K a×La

8­January­2007 © Copyright Ian D. Romanick 2007

Shading in OpenGL

 When GL_SMOOTH shading is used, lighting is
calculated per-vertex.

 Calculated lighting values (i.e., colors) are
interpolated down each edge of the polygon,
then across each scan-line.
 Also known as Gouraud shading.

 This is fast and easy to implement in the
hardware of 1992 when OpenGL 1.0 was born.

8­January­2007 © Copyright Ian D. Romanick 2007

What's the problem with this
shading model?

 Since lighting is only performed at vertexes, it is
easy miss specular highlights...

Image from M. Kilgard, “ Avoiding 16 Common OpenGL Pitfalls” , 1998.

8­January­2007 © Copyright Ian D. Romanick 2007

Phong Shading

 Last term we discussed Phong's lighting model,
but there is also a Phong shading model.
 We're going to use Phong shading with Blinn's

lighting model.
 Phong shading interpolates normals and

performs lighting calculations at each pixel.
 Much more expensive, but hardware is really fast

these days.

8­January­2007 © Copyright Ian D. Romanick 2007

How can we do this in OpenGL?

 Two problems must be solved:
 Interpolating surface normals.
 Performing a per-pixel dot product.

 How can we do these operations in OpenGL?
 The interpolation step is the easy part.

8­January­2007 © Copyright Ian D. Romanick 2007

DOT3 Texture Combine Mode

 The DOT3 texture combine mode can be used
to perform per-pixel lighting calculations.
 Available since OpenGL 1.3 or
ARB_texture_env_combine_dot3.

 Pretty much any card since original Radeon or
original Geforce supports this in some form.

 Some old cards may only support EXT version, which is
slightly different.

8­January­2007 © Copyright Ian D. Romanick 2007

DOT3 Texture Combine (cont.)

glTexEnvi(GL_TEXTURE_ENV,
 GL_TEXTURE_ENV_MODE,
 GL_COMBINE);

/* Store resulting dot product in color
 * and alpha components.
 */
glTexEnvi(GL_TEXTURE_ENV,
 GL_COMBINE_RGB,
 GL_DOT3_RGBA);

8­January­2007 © Copyright Ian D. Romanick 2007

Putting It Together

 Store light color in texture environment color.
 Store surface normals (in surface space) in a

texture.
 Store surface gloss map in a texture.
 Store H vector in per-vertex diffuse color.

 H must be calculated H per-vertex in C code!
 Configure combiners to calculate:

diffuse⋅texture0×env×texture1

8­January­2007 © Copyright Ian D. Romanick 2007

Putting It Together (cont.)

 This math seems to require one more multiply
than we can do in two texture stages.

 We can get the extra multiply by using the
alpha blender.
 Store the dot product in the alpha.
 Configure the blender to do GL_SRC_COLOR *
GL_SRC_ALPHA.

 What is the range of color & texture data?

diffuse⋅texture0×env×texture1

8­January­2007 © Copyright Ian D. Romanick 2007

Quick Alpha Example

/* Enable alpha blending. */
glEnable(GL_BLEND);

/* Multiply incoming fragment by it's
 * alpha and store in result pixel.
 */
glBlendFunc(GL_SRC_ALPHA, GL_ZERO);

8­January­2007 © Copyright Ian D. Romanick 2007

Only Specular?

 This only give specular. What about diffuse
and ambient?
 We can get free ambient using
glSecondaryColor and
glEnable(GL_COLOR_SUM).

 Several ways to get diffuse:
 Use more texture units (if available).
 Use a second pass.

 Will slightly different combine and alpha blend logic.

8­January­2007 © Copyright Ian D. Romanick 2007

Questions?

8­January­2007 © Copyright Ian D. Romanick 2007

 This work represents the view of the authors and does not necessarily
represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or service
marks of others.

Legal Statement

